Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.403
1.
Alzheimers Res Ther ; 16(1): 108, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745197

BACKGROUND: Sporadic cerebral amyloid angiopathy (sCAA) is a disease characterised by the progressive deposition of the amyloid beta (Aß) in the cerebral vasculature, capable of causing a variety of symptoms, from (mild) cognitive impairment, to micro- and major haemorrhagic lesions. Modern diagnosis of sCAA relies on radiological detection of late-stage hallmarks of disease, complicating early diagnosis and potential interventions in disease progression. Our goal in this study was to identify and validate novel biomarkers for sCAA. METHODS: We performed a proximity extension assay (PEA) on cerebrospinal fluid (CSF) samples of sCAA/control participants (n = 34/51). Additionally, we attempted to validate the top candidate biomarker in CSF and serum samples (n = 38/26) in a largely overlapping validation cohort, through analysis with a targeted immunoassay. RESULTS: Thirteen proteins were differentially expressed through PEA, with top candidate NFL significantly increased in CSF of sCAA patients (p < 0.0001). Validation analyses using immunoassays revealed increased CSF and serum NFL levels in sCAA patients (both p < 0.0001) with good discrimination between sCAA and controls (AUC: 0.85; AUC: 0.79 respectively). Additionally, the CSF: serum NFL ratio was significantly elevated in sCAA (p = 0.002). DISCUSSION: Large-scale targeted proteomics screening of CSF of sCAA patients and controls identified thirteen biomarker candidates for sCAA. Orthogonal validation of NFL identified NFL in CSF and serum as biomarker, capable of differentiating between sCAA patients and controls.


Biomarkers , Cerebral Amyloid Angiopathy , Neurofilament Proteins , Humans , Female , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Cerebral Amyloid Angiopathy/cerebrospinal fluid , Cerebral Amyloid Angiopathy/diagnosis , Male , Neurofilament Proteins/cerebrospinal fluid , Neurofilament Proteins/blood , Aged , Middle Aged , Immunoassay/methods
2.
Sci Rep ; 14(1): 10868, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740836

Therapeutic antibodies have been developed to target amyloid-beta (Aß), and some of these slow the progression of Alzheimer's disease (AD). However, they can also cause adverse events known as amyloid-related imaging abnormalities with edema (ARIA-E). We investigated therapeutic Aß antibody binding to cerebral amyloid angiopathy (CAA) fibrils isolated from human leptomeningeal tissue to study whether this related to the ARIA-E frequencies previously reported by clinical trials. The binding of Aß antibodies to CAA Aß fibrils was evaluated in vitro using immunoprecipitation, surface plasmon resonance, and direct binding assay. Marked differences in Aß antibody binding to CAA fibrils were observed. Solanezumab and crenezumab showed negligible CAA fibril binding and these antibodies have no reported ARIA-E cases. Lecanemab showed a low binding to CAA fibrils, consistent with its relatively low ARIA-E frequency of 12.6%, while aducanumab, bapineuzumab, and gantenerumab all showed higher binding to CAA fibrils and substantially higher ARIA-E frequencies (25-35%). An ARIA-E frequency of 24% was reported for donanemab, and its binding to CAA fibrils correlated with the amount of pyroglutamate-modified Aß present. The findings of this study support the proposal that Aß antibody-CAA interactions may relate to the ARIA-E frequency observed in patients treated with Aß-based immunotherapies.


Amyloid beta-Peptides , Cerebral Amyloid Angiopathy , Humans , Cerebral Amyloid Angiopathy/immunology , Cerebral Amyloid Angiopathy/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Alzheimer Disease/metabolism , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Protein Binding , Amyloid/metabolism , Amyloid/immunology , Surface Plasmon Resonance
3.
Neurology ; 102(10): e209386, 2024 May 28.
Article En | MEDLINE | ID: mdl-38710005

BACKGROUND AND OBJECTIVES: Updated criteria for the clinical-MRI diagnosis of cerebral amyloid angiopathy (CAA) have recently been proposed. However, their performance in individuals without symptomatic intracerebral hemorrhage (ICH) presentations is less defined. We aimed to assess the diagnostic performance of the Boston criteria version 2.0 for CAA diagnosis in a cohort of individuals ranging from cognitively normal to dementia in the community and memory clinic settings. METHODS: Fifty-four participants from the Mayo Clinic Study of Aging or Alzheimer's Disease Research Center were included if they had an antemortem MRI with gradient-recall echo sequences and a brain autopsy with CAA evaluation. Performance of the Boston criteria v2.0 was compared with v1.5 using histopathologically verified CAA as the reference standard. RESULTS: The median age at MRI was 75 years (interquartile range 65-80) with 28/54 participants having histopathologically verified CAA (i.e., moderate-to-severe CAA in at least 1 lobar region). The sensitivity and specificity of the Boston criteria v2.0 were 28.6% (95% CI 13.2%-48.7%) and 65.3% (95% CI 44.3%-82.8%) for probable CAA diagnosis (area under the receiver operating characteristic curve [AUC] 0.47) and 75.0% (55.1-89.3) and 38.5% (20.2-59.4) for any CAA diagnosis (possible + probable; AUC 0.57), respectively. The v2.0 Boston criteria were not superior in performance compared with the prior v1.5 criteria for either CAA diagnostic category. DISCUSSION: The Boston criteria v2.0 have low accuracy in patients who are asymptomatic or only have cognitive symptoms. Additional biomarkers need to be explored to optimize CAA diagnosis in this population.


Cerebral Amyloid Angiopathy , Magnetic Resonance Imaging , Humans , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/pathology , Aged , Female , Male , Magnetic Resonance Imaging/standards , Aged, 80 and over , Sensitivity and Specificity , Brain/diagnostic imaging , Brain/pathology , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology
4.
Alzheimers Res Ther ; 16(1): 99, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704569

BACKGROUND: Patients with sporadic cerebral amyloid angiopathy (sCAA) frequently report cognitive or neuropsychiatric symptoms. The aim of this study is to investigate whether in patients with sCAA, cognitive impairment and neuropsychiatric symptoms are associated with a cerebrospinal fluid (CSF) biomarker profile associated with Alzheimer's disease (AD). METHODS: In this cross-sectional study, we included participants with sCAA and dementia- and stroke-free, age- and sex-matched controls, who underwent a lumbar puncture, brain MRI, cognitive assessments, and self-administered and informant-based-questionnaires on neuropsychiatric symptoms. CSF phosphorylated tau, total tau and Aß42 levels were used to divide sCAA patients in two groups: CAA with (CAA-AD+) or without a CSF biomarker profile associated with AD (CAA-AD-). Performance on global cognition, specific cognitive domains (episodic memory, working memory, processing speed, verbal fluency, visuoconstruction, and executive functioning), presence and severity of neuropsychiatric symptoms, were compared between groups. RESULTS: sCAA-AD+ (n=31; mean age: 72 ± 6; 42%, 61% female) and sCAA-AD- (n=23; 70 ± 5; 42% female) participants did not differ with respect to global cognition or type of affected cognitive domain(s). The number or severity of neuropsychiatric symptoms also did not differ between sCAA-AD+ and sCAA-AD- participants. These results did not change after exclusion of patients without prior ICH. CONCLUSIONS: In participants with sCAA, a CSF biomarker profile associated with AD does not impact global cognition or specific cognitive domains, or the presence of neuropsychiatric symptoms.


Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Cerebral Amyloid Angiopathy , Neuropsychological Tests , tau Proteins , Humans , Female , Male , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Aged , Cross-Sectional Studies , Cerebral Amyloid Angiopathy/cerebrospinal fluid , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/diagnostic imaging , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/etiology , Peptide Fragments/cerebrospinal fluid , Cognition/physiology , Middle Aged , Magnetic Resonance Imaging
5.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38612775

Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of extracellular amyloid-ß peptides (Aß) within the cerebral parenchyma and vasculature, which is known as cerebral amyloid angiopathy (CAA). This study utilized confocal imaging to investigate heparan sulfate (HS) expression within the cerebrovasculature and its associations with Aß, gender, and ApoE4 genotype in AD. Our investigation revealed elevated levels of HS in the cerebrovasculature of AD patients with severe CAA. Additionally, these patients exhibited higher HS colocalization with Aß in the cerebrovasculature, including both endothelial and vascular smooth muscle cell compartments. Intriguingly, a reversal in the polarized expression of HS within the cerebrovasculature was detected in AD patients with severe CAA. Furthermore, male patients exhibited lower levels of both parenchymal and cerebrovascular HS. Additionally, ApoE4 carriers displayed heightened cerebrovascular Aß expression and a tendency of elevated cerebrovascular HS levels in AD patients with severe CAA. Overall, these findings reveal potential intricate interplay between HS, Aß, ApoE, and vascular pathology in AD, thereby underscoring the potential roles of cerebrovascular HS in CAA development and AD pathology. Further study of the underlying mechanisms may present novel therapeutic avenues for AD treatment.


Alzheimer Disease , Cerebral Amyloid Angiopathy , Neurodegenerative Diseases , Humans , Male , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Amyloid beta-Peptides , Heparitin Sulfate
7.
Sci Rep ; 14(1): 8441, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600214

Cerebral amyloid angiopathy (CAA) is a prevalent vascular dementia and common comorbidity of Alzheimer's disease (AD). While it is known that vascular fibrillar amyloid ß (Aß) deposits leads to vascular deterioration and can drive parenchymal CAA related inflammation (CAA-ri), underlying mechanisms of CAA pathology remain poorly understood. Here, we conducted brain regional proteomic analysis of early and late disease stages in the rTg-DI CAA rat model to gain molecular insight to mechanisms of CAA/CAA-ri progression and identify potential brain protein markers of CAA/CAA-ri. Longitudinal brain regional proteomic analysis revealed increased differentially expressed proteins (DEP) including ANXA3, HTRA1, APOE, CST3, and CLU, shared between the cortex, hippocampus, and thalamus, at both stages of disease in rTg-DI rats. Subsequent pathway analysis indicated pathway enrichment and predicted activation of TGF-ß1, which was confirmed by immunolabeling and ELISA. Further, we identified numerous CAA related DEPs associate with astrocytes (HSPB1 and MLC1) and microglia (ANXA3, SPARC, TGF-ß1) not previously associated with astrocytes or microglia in other AD models, possibly indicating that they are specific to CAA-ri. Thus, the data presented here identify several potential brain protein biomarkers of CAA/CAA-ri while providing novel molecular and mechanistic insight to mechanisms of CAA and CAA-ri pathological progression and glial cell mediated responses.


Alzheimer Disease , Cerebral Amyloid Angiopathy , Rats , Animals , Amyloid beta-Peptides/metabolism , Transforming Growth Factor beta1/metabolism , Proteomics , Cerebral Amyloid Angiopathy/pathology , Alzheimer Disease/metabolism , Brain/metabolism , Inflammation/pathology
8.
Alzheimers Res Ther ; 16(1): 74, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582898

BACKGROUND: Neuropsychiatric symptoms (NPS) may affect cognition, but their burden in cerebral amyloid angiopathy (CAA), one of the main causes of intracerebral hemorrhage (ICH) and dementia in the elderly, remains unclear. We investigated NPS, with emphasis on apathy and irritability in sporadic (sCAA) and Dutch-type hereditary (D-)CAA. METHODS: We included patients with sCAA and (pre)symptomatic D-CAA, and controls from four prospective cohort studies. We assessed NPS per group, stratified for history of ICH, using the informant-based Neuropsychiatric Inventory (NPI-Q), Starkstein Apathy scale (SAS), and Irritability Scale. We modeled the association of NPS with disease status, executive function, processing speed, and CAA-burden score on MRI and investigated sex-differences. RESULTS: We included 181 participants: 82 with sCAA (mean[SD] age 72[6] years, 44% women, 28% previous ICH), 56 with D-CAA (52[11] years, 54% women, n = 31[55%] presymptomatic), and 43 controls (69[9] years, 44% women). The NPI-Q NPS-count differed between patients and controls (sCAA-ICH+:adj.ß = 1.4[95%CI:0.6-2.3]; sCAA-ICH-:1.3[0.6-2.0]; symptomatic D-CAA:2.0[1.1-2.9]; presymptomatic D-CAA:1.2[0.1-2.2], control median:0[IQR:0-3]), but not between the different CAA-subgroups. Apathy and irritability were reported most frequently: n = 12[31%] sCAA, 19[37%] D-CAA had a high SAS-score; n = 12[29%] sCAA, 14[27%] D-CAA had a high Irritability Scale score. NPS-count was associated with decreased processing speed (adj.ß=-0.6[95%CI:-0.8;-0.4]) and executive function (adj.ß=-0.4[95%CI:-0.6;-0.1]), but not with radiological CAA-burden. Men had NPS more often than women. DISCUSSION: According to informants, one third to half of patients with CAA have NPS, mostly apathy, even in presymptomatic D-CAA and possibly with increased susceptibility in men. Neurologists should inform patients and caregivers of these disease consequences and treat or refer patients with NPS appropriately.


Apathy , Cerebral Amyloid Angiopathy, Familial , Cerebral Amyloid Angiopathy , Male , Humans , Female , Aged , Child , Cerebral Amyloid Angiopathy, Familial/complications , Prospective Studies , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Hemorrhage/complications , Magnetic Resonance Imaging
9.
Brain Nerve ; 76(4): 333-342, 2024 Apr.
Article Ja | MEDLINE | ID: mdl-38589278

Dementia is characterized by acquired cognitive dysfunction caused by various neurological disorders. Many neurological conditions can cause dementia, including neurodegenerative diseases, vascular disorders, infections, inflammation, demyelination, intoxication, metabolic disorders, tumors, and head trauma. Despite recent developments in biomarkers and imaging techniques, neuropathological examination is necessary for the final diagnosis. Moreover, approximately 11% of the patients with dementia have dual or triple pathological conditions. The coexistence of neurological diseases makes it difficult for neurologists to diagnose patients accurately. Degenerative diseases are characterized by neuronal loss with gliosis in distinct parts of the brain, the presence of neuronal or glial inclusions, and abnormal protein accumulation. Senile plaques and neurofibrillary tangles are neuropathological hallmarks of Alzheimer's disease. These findings are characterized by the presence of amyloid ß protein (Aß) and phosphorylated tau protein, respectively. Although vascular dementia is common, it may be difficult to identify the relationship between vascular lesions and cognitive impairment. The incidence of sporadic Aß-type cerebral amyloid angiopathy (CAA) tends to increase with age and causes dementia due to vascular dysfunction and leukoencephalopathy. Furthermore, patients with CAA can develop inflammation. Clinical neurologists should possess a neuropathological perspective for the appropriate diagnosis and management of patients with dementia.


Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Amyloid beta-Peptides , Alzheimer Disease/pathology , Cerebral Amyloid Angiopathy/pathology , Brain/pathology , Inflammation
10.
Clin Nucl Med ; 49(6): e281-e283, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38619985

ABSTRACT: Cerebral amyloid angiopathy-related inflammation is a rare encephalopathy characterized by inflammation against amyloid protein accumulated in cerebral small vessels. A 50-year-old man was presented with a subacute consciousness disorder. Brain MRI revealed high intensity lesions in the white matter of the right parietal and occipital lobes on fluid-attenuated inversion recovery sequences and cerebral microbleeds in the right parietal and occipital lobes on T2*-weighted images. Pittsburgh compound B-PET demonstrated accumulation in the right temporoparietal lobe, confirming a potential diagnosis of probable cerebral amyloid angiopathy-related inflammation without brain biopsy. Steroid pulse therapy was initiated, with good results.


Aniline Compounds , Cerebral Amyloid Angiopathy , Inflammation , Positron-Emission Tomography , Thiazoles , Humans , Male , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/complications , Middle Aged , Inflammation/diagnostic imaging
11.
Alzheimers Res Ther ; 16(1): 86, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654326

BACKGROUND: Neurofilament light chain (NFL) is a biomarker for neuroaxonal damage and glial fibrillary acidic protein (GFAP) for reactive astrocytosis. Both processes occur in cerebral amyloid angiopathy (CAA), but studies investigating the potential of NFL and GFAP as markers for CAA are lacking. We aimed to investigate NFL and GFAP as biomarkers for neuroaxonal damage and astrocytosis in CAA. METHODS: For this cross-sectional study serum and cerebrospinal fluid (CSF) samples were collected between 2010 and 2020 from controls, (pre)symptomatic Dutch-type hereditary (D-CAA) mutation-carriers and participants with sporadic CAA (sCAA) from two prospective CAA studies at two University hospitals in the Netherlands. NFL and GFAP levels were measured with Simoa-assays. The association between NFL and GFAP levels and age, cognitive performance (MoCA), CAA-related MRI markers (CAA-CSVD-burden) and Aß40 and Aß42 levels in CSF were assessed with linear regression adjusted for confounders. The control group was divided in age < 55 and ≥55 years to match the specific groups. RESULTS: We included 187 participants: 28 presymptomatic D-CAA mutation-carriers (mean age 40 years), 29 symptomatic D-CAA participants (mean age 58 years), 59 sCAA participants (mean age 72 years), 33 controls < 55 years (mean age 42 years) and 38 controls ≥ 55 years (mean age 65 years). In presymptomatic D-CAA, only GFAP in CSF (7.7*103pg/mL vs. 4.4*103pg/mL in controls; P<.001) was increased compared to controls. In symptomatic D-CAA, both serum (NFL:26.2pg/mL vs. 12.5pg/mL; P=0.008, GFAP:130.8pg/mL vs. 123.4pg/mL; P=0.027) and CSF (NFL:16.8*102pg/mL vs. 7.8*102pg/mL; P=0.01 and GFAP:11.4*103pg/mL vs. 7.5*103pg/mL; P<.001) levels were higher than in controls and serum levels (NFL:26.2pg/mL vs. 6.7pg/mL; P=0.05 and GFAP:130.8pg/mL vs. 66.0pg/mL; P=0.004) were higher than in pre-symptomatic D-CAA. In sCAA, only NFL levels were increased compared to controls in both serum (25.6pg/mL vs. 12.5pg/mL; P=0.005) and CSF (20.0*102pg/mL vs 7.8*102pg/mL; P=0.008). All levels correlated with age. Serum NFL correlated with MoCA (P=0.008) and CAA-CSVD score (P<.001). NFL and GFAP in CSF correlated with Aß42 levels (P=0.01/0.02). CONCLUSIONS: GFAP level in CSF is an early biomarker for CAA and is increased years before symptom onset. NFL and GFAP levels in serum and CSF are biomarkers for advanced CAA.


Biomarkers , Cerebral Amyloid Angiopathy , Glial Fibrillary Acidic Protein , Neurofilament Proteins , Humans , Neurofilament Proteins/cerebrospinal fluid , Neurofilament Proteins/blood , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Glial Fibrillary Acidic Protein/blood , Female , Male , Middle Aged , Cross-Sectional Studies , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Aged , Cerebral Amyloid Angiopathy/cerebrospinal fluid , Cerebral Amyloid Angiopathy/blood , Cerebral Amyloid Angiopathy/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/blood , Adult , Prospective Studies , Magnetic Resonance Imaging
12.
Sci Rep ; 14(1): 5922, 2024 03 11.
Article En | MEDLINE | ID: mdl-38467658

Cerebral amyloid angiopathy (CAA) is recognized as a cause of cognitive impairment, but its cognitive profile needs to be characterized, also respect to hypertension-related microangiopathy (HA). We aimed at comparing difference or similarity of CAA and HA patients' cognitive profiles, and their associated factors. Participants underwent an extensive clinical, neuropsychological, and neuroimaging protocol. HA patients (n = 39) were more frequently males, with history of vascular risk factors than CAA (n = 32). Compared to HA, CAA patients presented worse performance at MoCA (p = 0.001) and semantic fluency (p = 0.043), and a higher prevalence of amnestic MCI (46% vs. 68%). In univariate analyses, multi-domain MCI was associated with worse performance at MoCA, Rey Auditory Verbal Learning Test (RAVLT), and semantic fluency in CAA patients, and with worse performance at Symbol Digit Modalities Test (SDMT) and phonemic fluency in HA ones. In multivariate models, multi-domain deficit remained as the only factor associated with RAVLT (ß = - 0.574) in CAA, while with SDMT (ß = - 0.364) and phonemic fluency (ß = - 0.351) in HA. Our results highlight different patterns of cognitive deficits in CAA or HA patients. While HA patients' cognitive profile was confirmed as mainly attentional/executive, a complex cognitive profile, characterized also by deficit in semantic memory, seems the hallmark of CAA patients.


Alzheimer Disease , Cerebral Amyloid Angiopathy , Cerebral Small Vessel Diseases , Cognitive Dysfunction , Hypertension , Male , Humans , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/psychology , Cognitive Dysfunction/psychology , Hypertension/complications , Cognition , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Alzheimer Disease/complications , Magnetic Resonance Imaging/methods
13.
Alzheimers Dement ; 20(4): 2766-2778, 2024 Apr.
Article En | MEDLINE | ID: mdl-38425134

INTRODUCTION: Hypertension and diabetes are common cardiovascular risk factors that increase Alzheimer's disease (AD) risk. However, it is unclear whether AD risk differs in hypertensive individuals with and without diabetes. METHODS: Cognitively normal individuals (N = 11,074) from the National Alzheimer's Coordinating Center (NACC) were categorized as having (1) hypertension with diabetes (HTN+/DM+), (2) hypertension without diabetes (HTN+/DM-), or (3) neither (HTN-/DM-). AD risk in HTN+/DM+ and HTN+/DM- was compared to HTN-/DM-. This risk was then investigated in those with AD neuropathology (ADNP), cerebral amyloid angiopathy (CAA), cerebrovascular neuropathology (CVNP), arteriolosclerosis, and atherosclerosis. Finally, AD risk in HTN-/DM+ was compared to HTN-/DM-. RESULTS: Seven percent (N = 830) of individuals developed AD. HTN+/DM+ (hazard ratio [HR] = 1.31 [1.19-1.44]) and HTN+/DM- (HR = 1.24 [1.17-1.32]) increased AD risk compared to HTN-/DM-. AD risk was greater in HTN+/DM+ with ADNP (HR = 2.10 [1.16-3.79]) and CAA (HR = 1.52 [1.09-2.12]), and in HTN+/DM- with CVNP (HR = 1.54 [1.17-2.03]). HTN-/DM+ also increased AD risk (HR = 1.88 [1.30-2.72]) compared to HTN-/DM-. DISCUSSION: HTN+/DM+ and HTN+/DM- increased AD risk compared to HTN-/DM-, but pathological differences between groups suggest targeted therapies may be warranted based on cardiovascular risk profiles. HIGHLIGHTS: AD risk was studied in hypertensive (HTN+) individuals with/without diabetes (DM+/-). HTN+/DM+ and HTN+/DM- both had an increased risk of AD compared to HTN-/DM-. Post mortem analysis identified neuropathological differences between HTN+/DM+ and HTN+/DM-. In HTN+/DM+, AD risk was greater in those with AD neuropathology and CAA. In HTN+/DM-, AD risk was greater in those with cerebrovascular neuropathology.


Alzheimer Disease , Atherosclerosis , Cerebral Amyloid Angiopathy , Diabetes Mellitus , Hypertension , Humans , Alzheimer Disease/epidemiology , Alzheimer Disease/pathology , Hypertension/complications , Hypertension/epidemiology , Diabetes Mellitus/epidemiology
15.
Stroke ; 55(4): 954-962, 2024 Apr.
Article En | MEDLINE | ID: mdl-38445479

BACKGROUND: The temporal ordering of biomarkers for cerebral amyloid angiopathy (CAA) is important for their use in trials and for the understanding of the pathological cascade of CAA. We investigated the presence and abnormality of the most common biomarkers in the largest (pre)symptomatic Dutch-type hereditary CAA (D-CAA) cohort to date. METHODS: We included cross-sectional data from participants with (pre)symptomatic D-CAA and controls without CAA. We investigated CAA-related cerebral small vessel disease markers on 3T-MRI, cerebrovascular reactivity with functional 7T-MRI (fMRI) and amyloid-ß40 and amyloid-ß42 levels in cerebrospinal fluid. We calculated frequencies and plotted biomarker abnormality according to age to form scatterplots. RESULTS: We included 68 participants with D-CAA (59% presymptomatic, mean age, 50 [range, 26-75] years; 53% women), 53 controls (mean age, 51 years; 42% women) for cerebrospinal fluid analysis and 36 controls (mean age, 53 years; 100% women) for fMRI analysis. Decreased cerebrospinal fluid amyloid-ß40 and amyloid-ß42 levels were the earliest biomarkers present: all D-CAA participants had lower levels of amyloid-ß40 and amyloid-ß42 compared with controls (youngest participant 30 years). Markers of nonhemorrhagic injury (>20 enlarged perivascular spaces in the centrum semiovale and white matter hyperintensities Fazekas score, ≥2, present in 83% [n=54]) and markers of impaired cerebrovascular reactivity (abnormal BOLD amplitude, time to peak and time to baseline, present in 56% [n=38]) were present from the age of 30 years. Finally, markers of hemorrhagic injury were present in 64% (n=41) and only appeared after the age of 41 years (first microbleeds and macrobleeds followed by cortical superficial siderosis). CONCLUSIONS: Our results suggest that amyloid biomarkers in cerebrospinal fluid are the first to become abnormal in CAA, followed by MRI biomarkers for cerebrovascular reactivity and nonhemorrhagic injury and lastly hemorrhagic injury. This temporal ordering probably reflects the pathological stages of CAA and should be taken into account when future therapeutic trials targeting specific stages are designed.


Cerebral Amyloid Angiopathy, Familial , Cerebral Amyloid Angiopathy , Humans , Female , Middle Aged , Adult , Male , Cerebral Amyloid Angiopathy, Familial/diagnostic imaging , Cross-Sectional Studies , Cerebral Amyloid Angiopathy/diagnostic imaging , Magnetic Resonance Imaging/methods , Cerebral Hemorrhage , Biomarkers
16.
J Neurol Sci ; 459: 122975, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38527411

BACKGROUND: Strictly superficial cerebellar microbleeds and cerebellar superficial siderosis have been considered markers of advanced cerebral amyloid angiopathy (CAA), but there are few studies on cerebellar ischemic lesions in CAA. We investigated the presence of superficial small cerebellar infarct (SCI) ≤15 mm and its relation to magnetic resonance imaging (MRI) markers in patients with probable CAA. METHODS: Eighty patients with probable CAA were retrospectively evaluated. The presence of superficial SCIs was examined, along with cerebellar microbleeds and cerebellar superficial siderosis, using 3-T MRI. Lobar cerebral microbleeds, cortical superficial siderosis (cSS), enlargement of the perivascular space in the centrum semiovale, and white matter hyperintensity were assessed and the total CAA-small vessel disease (SVD) score was calculated. RESULTS: Nine of the 80 patients (11.3%) had a total of 16 superficial SCIs. By tentatively defining SCI <4 mm as cerebellar microinfarcts, 8 out of 16 (50%) superficial SCIs corresponded to cerebellar microinfarcts. The total CAA-SVD score was significantly higher in patients with superficial SCIs (p = 0.01). The prevalence of cSS (p = 0.018), cortical cerebral microinfarct (p = 0.034), and superficial cerebellar microbleeds (p = 0.006) was significantly higher in patients with superficial SCIs. The number of superficial cerebellar microbleeds was also significantly higher in patients with superficial SCIs (p = 0.001). CONCLUSIONS: Our results suggest that in patients with CAA, superficial SCIs (including microinfarcts) on MRI may indicate more severe, advanced-stage CAA. These preliminary findings should be verified by larger prospective studies in the future.


Cerebral Amyloid Angiopathy , Cerebral Small Vessel Diseases , Siderosis , Humans , Retrospective Studies , Cerebral Hemorrhage/epidemiology , Prospective Studies , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/epidemiology , Magnetic Resonance Imaging/methods , Infarction
17.
Stroke ; 55(4): 1101-1112, 2024 Apr.
Article En | MEDLINE | ID: mdl-38465605

Cerebral microbleeds (CMBs) detected on blood-sensitive magnetic resonance imaging sequences are usually a sign of an underlying cerebral small vessel disease such as sporadic cerebral amyloid angiopathy or sporadic nonamyloid small vessel pathology (eg, arteriolosclerosis). Much of the enduring interest in CMBs relates to their high prevalence (partly due to the widespread use of magnetic resonance imaging) in the context of stroke, cognitive impairment and in healthy individuals, and the clinical uncertainties created about the safety of antithrombotic medications due to their association with both future hemorrhagic and ischemic stroke. Historically, the research literature overwhelmingly emphasized the future hemorrhagic risk associated with CMBs, potentially leading to unnecessary withholding of treatments proven effective at preventing thrombosis, such as anticoagulants in patients with atrial fibrillation who happened to have some microbleeds. The lack of strong guidelines in this area contributes to wide variation in clinical practice. In this article, we critically review and discuss the implications of silent CMBs and cortical superficial siderosis (ie, without symptomatic intracerebral hemorrhage) in different clinical settings: the general population, patients with ischemic stroke, and the memory clinic. Emerging evidence, albeit not from randomized controlled trials, suggests that in most patients, CMBs alone should not prevent the use of antithrombotics or anticoagulants for stroke prevention, when they are otherwise indicated. Where possible, we provide specific suggestions for clinical care grounded in both the limited available literature and our personal clinical practice.


Cerebral Amyloid Angiopathy , Ischemic Stroke , Stroke , Humans , Stroke/diagnostic imaging , Stroke/prevention & control , Stroke/complications , Cerebral Hemorrhage/complications , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/drug therapy , Magnetic Resonance Imaging , Anticoagulants/therapeutic use , Ischemic Stroke/drug therapy
18.
Neurology ; 102(7): e209172, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38478792

BACKGROUND AND OBJECTIVES: Epilepsy is 1 of the 3 most common neurologic diseases of older adults, but few studies have examined its underlying pathologies in older age. We examined the associations of age-related brain pathologies with epilepsy in older persons. METHODS: Clinical and pathologic data came from 2 ongoing clinical pathologic cohort studies of community-dwelling older adults. Epilepsy was ascertained using Medicare fee-for-service Parts A and B claims data that were linked to data from the cohort studies. The postmortem pathologic assessment collected indices of 9 pathologies including Alzheimer disease, hippocampal sclerosis, macroinfarcts, and cerebral amyloid angiopathy. The fixed brain hemisphere was imaged using 3T MRI scanners before the pathologic assessments in a subgroup of participants. RESULTS: The participants (n = 1,369) were on average 89.3 (6.6) years at death, and 67.0% were women. Epilepsy was identified in 58 (4.2%) participants. Cerebral amyloid angiopathy (odds ratio [OR] = 2.21, 95% CI 1.24-3.95, p = 0.007) and cortical macroinfarcts (OR = 2.74, 95% CI 1.42-5.28, p = 0.003) were associated with a higher odds of epilepsy. Of note, hippocampal sclerosis and Alzheimer disease pathology were not associated with epilepsy (both p's > 0.25), although hippocampal sclerosis was not common and thus hard to examine with the modest number of epilepsy cases here. In 673 participants with MRI data, the association of cerebral amyloid angiopathy and cortical macroinfarcts with epilepsy did not change after controlling for cortical gray matter atrophy, which was independently associated with a higher odds of epilepsy (OR = 1.06, 95% CI 1.02-1.10, p = 0.003). By contrast, hippocampal volume was not associated with epilepsy. DISCUSSION: Cerebrovascular pathologies and cortical atrophy were associated with epilepsy in older persons.


Alzheimer Disease , Cerebral Amyloid Angiopathy , Epilepsy , Hippocampal Sclerosis , United States/epidemiology , Humans , Female , Aged , Aged, 80 and over , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Medicare , Cerebral Amyloid Angiopathy/pathology , Autopsy , Epilepsy/diagnostic imaging , Epilepsy/epidemiology , Epilepsy/pathology , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology
19.
Article Ru | MEDLINE | ID: mdl-38465814

Cerebral amyloid angiopathy (CAA) is a progressive disease characterized by the deposition of ß-amyloid in the walls of blood vessels in the brain, which leads to their damage and disruption of normal blood flow. Morphologically, CAA is characterized by both isolated lesions (microhemorrhages with the appearance of cortical superficial siderosis, lacunar infarctions) and widespread changes (hyperintensity of the deep and periventricular white matter, expansion of the perivascular spaces) of cortical and subcortical localization. CAA is considered a major cause of cognitive impairment and intracerebral microbleeds, especially in patients with Alzheimer's disease. The review presents modern ideas about the etiology, pathogenesis, clinical manifestations of CAA, and also outlines the provisions of the Boston principles of CAA, revised in 2022. Understanding the features of pathogenetic methods of CAA is crucial for adjusting the accuracy of diagnosis and developing treatment methods to preserve and prolong cognitive health.


Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Cerebral Amyloid Angiopathy/diagnosis , Cerebral Amyloid Angiopathy/diagnostic imaging , Brain/pathology , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/etiology , Magnetic Resonance Imaging
20.
Alzheimers Res Ther ; 16(1): 56, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38475929

BACKGROUND: Although abnormal accumulation of amyloid beta (Aß) protein is thought to be the main cause of Alzheimer's disease (AD), emerging evidence suggests a pivotal vascular contribution to AD. Aberrant amyloid ß induces neurovascular dysfunction, leading to changes in the morphology and function of the microvasculature. However, little is known about the underlying mechanisms between Aß deposition and vascular injuries. Recent studies have revealed that pericytes play a substantial role in the vasculopathy of AD. Additional research is imperative to attain a more comprehensive understanding. METHODS: Two-photon microscopy and laser speckle imaging were used to examine cerebrovascular dysfunction. Aß oligomer stereotactic injection model was established to explain the relationship between Aß and vasculopathy. Immunofluorescence staining, western blot, and real-time PCR were applied to detect the morphological and molecular alternations of pericytes. Primary cultured pericytes and bEnd.3 cells were employed to explore the underlying mechanisms. RESULTS: Vasculopathy including BBB damage, hypoperfusion, and low vessel density were found in the cortex of 8 to 10-month-old 5xFAD mice. A similar phenomenon accompanied by pericyte degeneration appeared in an Aß-injected model, suggesting a direct relationship between Aß and vascular dysfunction. Pericytes showed impaired features including low PDGFRß expression and increased pro-inflammatory chemokines secretion under the administration of Aß in vitro, of which supernatant cultured with bEND.3 cells led to significant endothelial dysfunction characterized by TJ protein deficiency. CONCLUSIONS: Our results provide new insights into the pathogenic mechanism underlying Aß-induced vasculopathy. Targeting pericyte therapies are promising to ameliorate vascular dysfunction in AD.


Alzheimer Disease , Cerebral Amyloid Angiopathy , Cerebrovascular Disorders , Mice , Animals , Amyloid beta-Peptides/metabolism , Pericytes/pathology , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Alzheimer Disease/pathology , Cerebrovascular Disorders/complications
...